59 research outputs found

    Aortic Wave Dynamics and Its Influence on Left Ventricular Workload

    Get PDF
    The pumping mechanism of the heart is pulsatile, so the heart generates pulsatile flow that enters into the compliant aorta in the form of pressure and flow waves. We hypothesized that there exists a specific heart rate at which the external left ventricular (LV) power is minimized. To test this hypothesis, we used a computational model to explore the effects of heart rate (HR) and aortic rigidity on left ventricular (LV) power requirement. While both mean and pulsatile parts of the pressure play an important role in LV power requirement elevation, at higher rigidities the effect of pulsatility becomes more dominant. For any given aortic rigidity, there exists an optimum HR that minimizes the LV power requirement at a given cardiac output. The optimum HR shifts to higher values as the aorta becomes more rigid. To conclude, there is an optimum condition for aortic waves that minimizes the LV pulsatile load and consequently the total LV workload

    A wave dynamics criterion for optimization of mammalian cardiovascular system

    Get PDF
    The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system

    A Bio-Inspired Approach for the Reduction of Left Ventricular Workload

    Get PDF
    Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring) at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta

    Low pulse pressure with high pulsatile external left ventricular power: Influence of aortic waves

    No full text
    Elevated pulse pressure (pp) is considered to be a risk factor for adverse cardiovascular events since it is directly related to an elevated myocardial workload. Information about both pressure and flow wave must be provided to assess hemodynamic complexity and true level of external left ventricular power (ELVP). pp value as a single feature of aortic waves cannot identify true level of ELVP. However, it is generally presumed that ELVP (and consequently LV workload) is positively correlated with pp. This study examined this positive correlation. The aim of this study was to test the hypothesis that aortic wave dynamics can create destructive hemodynamic conditions that increase the ELVP even though pp appears to be normal. To test this hypothesis, a computational model of the aorta with physiological properties was used. A Finite Element Method with fluid–structure interaction was employed to solve the equations of the solid and fluid. The aortic wall was assumed to be elastic and isotropic. The blood was assumed to be an incompressible Newtonian fluid. Simulations were performed for various heart rates (HR) and different aortic compliances while keeping the shape of the inlet flow and peripheral resistance constant. As expected, in most of the cases studied here, higher pp was associated with higher LV power demand. However, for a given cardiac output, mean pressure, and location of total reflection site, we have found cases where the above-mentioned trend does not hold. Our results suggest that using pp as a single index can result in an underestimation of the LV power demand under certain conditions related to the altered wave dynamics. Hence, in hypertensive patients, a full analysis of aortic wave dynamics is essential for the prevention and management of left ventricular hypertrophy (LVH) and congestive heart failure

    Pulse Pressure as a Single Index May not Represent the Level of Left Ventricle Work Load: Influence of Aortic Wave Dynamics

    No full text
    Introduction: Hypertension plays a critical role in the pathogenesis of heart failure primarily due to elevation of left ventricular (LV) work load followed by LV hypertrophy (LVH). Elevated pulse pressure (PP) is a risk factor for adverse cardiovascular events since it is directly related to elevated myocardial workload. We hypothesized that aortic wave dynamics can create hemodynamic conditions that increase LV power requirements

    In-vitro investigation of a potential wave pumping effect in human aorta

    No full text
    An impedance pump – also known as Liebau pump – is a simple valveless pump that operates based on the principles of wave propagation and reflection. It has been shown in embryonic zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during the early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. In this study we report the results of an in-vitro study that examines the hypothesis that the adult human aorta acts as a passive pump based on Liebau effect. A hydraulic model with different compliant models of an artificial aorta was used for a series of in-vitro experiments. Our result indicates that wave propagation and reflection can result in a pumping mechanism in a compliant aorta

    Cardiac Triangle Mapping: A New Systems Approach for Noninvasive Evaluation of Left Ventricular End Diastolic Pressure

    No full text
    Noninvasive and practical assessment of hemodynamics is a critical unmet need in the treatment of both chronic and acute cardiovascular diseases. Particularly, the ability to monitor left ventricular end-diastolic pressure (LVEDP) noninvasively offers enormous benefit for managing patients with chronic congestive heart failure. Recently, we provided proof of concept that a new cardiac metric, intrinsic frequency (IF), derived from mathematical analysis of non-invasively captured arterial waveforms, can be used to accurately compute cardiovascular hemodynamic measures, such as left ventricle ejection fraction (LVEF), by using a smartphone. In this manuscript, we propose a new systems-based method called cardiac triangle mapping (CTM) for hemodynamics evaluation of the left ventricle. This method is based on intrinsic frequency (IF) and systolic time interval (STI) methods that allows computation of LVEDP from noninvasive measurements. Since the CTM method only requires arterial waveform and electrocardiogram (ECG), it can eventually be adopted as a simple smartphone-based device, an inexpensive hand-held device, or perhaps (with future design modifications) a wearable sensor. Such devices, combined with this method, would allow for remote monitoring of heart failure patients
    • …
    corecore